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Abstract 

Our earlier work demonstrated the feasibility of CAD for certain types of ferrimagnetic garnets. Experimental results and the 
theoretical model built thereupon were presented, along with a detailed discussion of numerical processing and computer 
implementation. Here we expand our discussion of the numerical processing, and suggest future use of software oriented towards 
symbolic and graphical processing. We follow with a proposal for applying neural networks, especially in the data analysis and 
model building phases. In the last part we present additional experimental data and their graphical analysis. The results fully agree 
with our earlier predictive model, based on the linear pattern of change of the magnetic parameters. 
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1. Numerical and symbolic processing 

Our earlier analyses [1,2] and the rudimentary CAD 
were implemented entirely in MATLAB [3]. The choice 
was motivated firstly by the wide availability of  the 
package and its relatively modest demands on comput- 
ing power. The almost universal familiarity with the 
package within the electrical engineering community 
was the other main reason for attempting such imple- 
mentation; some of the resulting programs were pre- 
sented in the Appendix to our earlier paper [1]. These 
codes, if viewed more closely (which we do not particu- 
larly recommend) would reveal several programming 
obscurities. They were caused by the intrinsic limita- 
tions of MATLAB. Simply, MATLAB was designed 
only for a limited audience, requiring 'quick and dirty' 
matrix manipulations for signal processing problems. It 
was not designed with much forethought as a more 
general programming language. For  example, it has no 
facilities for representing three- and higher dimensional 
arrays, even though many vector and matrix problems 
naturally lead to such structures. The control and loop- 
ing facilities are primitive, about on the level of  earlier 
FORTRAN's .  (This should not be construed as criti- 
cism - -  it permits very easy implementation of its basic 
functions, thus gaining in simplicity at the cost of 
certain sophistication.) 

By way of illustration we will comment here on three 
troublesome problems encountered while using MAT- 
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LAB. The first difficulty came at the data acquisition 
stage. Unpredictably, MATLAB has severe limitations 
on the length of  input vectors; it also does not permit 
easy input of two- or higher dimensional data. MAPLE 
[4] and M A T H E M A T I C A  [5] have no difficulty in 
handling arbitrary-length inputs, whether as a single 
stream of numbers, or in a structured form. The latter 
refers to the option of entering data as a sequence of 
sequences, thus explicitly entering the matrix in a row- 
major fashion. 

The second difficulty, much more significant, was the 
presentation of three-dimensional data. Ostensibly 
MATLAB can handle it, and its newest release (which 
was not available at the time of  the original work) 
promised a reasonable support for the graphical display 
of data points and surfaces dependent on two parame- 
ters. In practice, attempts to use this facility failed. It 
was virtually impossible to present, for example, a 
three-dimensional plot, with the coordinate axes, and 
make the result at all comprehensible. MAPLE handles 
such problems quite easily, and M A T H E M A T I C A  is 
almost spectacular; management of graphical displays is 
one of the strongest points in its favor. Options are 
seemingly unlimited, with all sorts of  rotations and 
changes of viewpoints, shading and coloring, and all 
kinds of scaling. 

The third and last difficulty we discuss here falls 
entirely beyond the scope of  MATLAB (to reiterate - -  
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it is not a criticism, as the package was intended for a 
different audience and applications). It is the absence of 
symbolic computing. We performed basic curve fitting 
using certain least-squares based routines of MATLAB. 
Owing to the physical consideration of change of  phase, 
we fitted curves separately in the adjacent temperature 
regions. Already, combining these three curves would 
have been handled better using their symbolic represen- 
tations. More serious difficulty ensued with attempts to 
discover patterns and regularities as the chemical com- 
position of the materials was varied. One of our major 
results was the discovery of  an approximately linear 
behavior of a number of key magnetic parameters. 
Additional work would be needed to refine this model 
and allow for recognition of second-order (nonlinear) 
changes. To accomplish this efficiently, simple numerical 
processing of  data is not likely to be sufficient. One 
possible direction is to use a symbolic representation for 
the magnetization curves. Another would be to dispense 
with 'hard'  coefficients and attempt a form of  pattern 
recognition using neural networks. They have been used 
in the past, with good success, for several difficult 
applications [6]. 

2. Neural networks 

Neural networks are complexly interconnected collec- 
tions of  small processing elements. They are named in 
analogy with the human nervous system. 

Biological neurons form a vast network in the ner- 
vous system, forming elaborate structures with ex- 
tremely complex interconnections. The network receives 
inputs from receptors ranging from rods and cones in 
the retina to stretch receptors in muscles. These recep- 
tors convert stimuli into patterns of electrical activity in 
the network. After some processing, any outputs are 
expressed in terms of electrical activity to effectors such 
as muscles and glands. It has been estimated that there 
are of  the order of  l0 w neurons in the human nervous 
system, each of  which is connected to 104 other neurons 
on average. 

The connections between neurons are called synapses, 
and are chemical in nature. There is a synaptic gap 
which is bridged by the release of  various chemicals 
called neurotransmitters. A neurotransmitter released 
into a synapse may be either excitatory, in that it 
increases the likelihood that the cell on the output side 
of  the synapse will fire, or inhibitory in that its likeli- 
hood of  firing is decreased. The release of chemicals 
from many synapses happens continuously. When the 
concentration of  excitatory neurotransmitters diffusing 
into a cell from all its synapses is sufficiently higher than 
the concentration of  inhibitory neurotransmitters, the 
cell will experience a chain reaction of electrical activity, 
which is called firing, and the pulse travelling down the 

axon will cause the release of neurotransmitters at all of  
its connections to other cells. The cell now has a 
refractory period during which it is unable to fire again, 
while the ions which leaked out to produce the electric 
pulse are pumped back in again. For the cell to fire, its 
threshold of excitation must be exceeded within some 
strict temporal neighborhood because, while it takes 
some time for the chemicals to diffuse across the 
synapse, if too long a period of time elapses after the 
release of the neurotransmitters from a particular 
synapse, they will diffuse away. This is called the period 
of latent summation. In the human brain the time from 
the arrival of impulses to firing and the refractory period 
is on the order of  one thousandth of a second. From the 
point of view of  modern digital computers, this is a very 
slow clock cycle, yet we manage to perform extremely 
complicated tasks using this architectural base. 

The computational power of neural networks derives 
from simple local computations within individual ele- 
ments, and their interactions with other processing 
elements, all operating in parallel. This is in contrast 
with the more familiar von Neumann computer architec- 
ture we find in modern digital computers, with their 
large, fast central processing unit which performs large 
numbers of calculations in sequence. It is worth pointing 
out that, while hardware to implement the requirements 
of  truly parallel neural networks exists, and is becoming 
cheaper, most work and utilization of neural network 
methods still rely on simulations of the neural network 
on von Neumann machines. This emphasizes an impor- 
tant aspect, that the new paradigm of neural computa- 
tion enables us to perform tasks which could not be 
readily programmed using conventional programming 
techniques. 

2. I. Neural network training 

A major advantage of  neural computation is the 
ability of  neural networks to learn from examples. In 
supervised learning, for example, networks are generally 
initiated with random weights on their connections. This 
means that the initial functionality is random. Thus, 
when the first input pattern is presented to the network, 
the result is not likely to be correct. Once the network 
has produced an output, the difference from the ex- 
pected result can be calculated, and used to tweak the 
weights in the network slightly so as to increase the 
likelihood that a subsequent presentation of  the same 
input pattern will produce the correct output. If a 
sufficiently large number of  input patterns is presented 
to the network and its weights adjusted each time, 
eventually the network will learn the collection of input 
patterns and produce appropriate responses. 

The essential procedure for training a feedforward 
neural network using the error back-propagation al- 
gorithm can be summarized in a few steps [7]. 
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• Create input patterns from the raw data. A neural 
network input pattern for a supervised learning al- 
gorithm consists of a number of input values, and the 
expected, or correct, output value associated with those 
input values. These values should be normalized to a 
range from 0.1 to 0.9 for quicker learning by the neural 
network. Any well-known preprocessing steps which 
improve the information quality of the data should also 
be done, again to speed up learning. 

• Separate data into training and test sets. The 
network should be trained on some 70% of the avail- 
able input patterns, and intermittently tested on the 
remaining data without modifying weight connections 
during testing. 

• Initialize the connection weights in the network to 
small random values. This provides some small random 
initial functionality which is necessary to break the 
all-zeros symmetry of the network. Without random 
initialization a synchronous simulation of a neural net- 
work will never learn complex examples. 

• Present each input pattern in the training set to 
the network, and propagate the activations through 
successive layers until the output layer produces results. 

• Compare the result with the desired output, and 
calculate an error measure. This error is used to modify 
the weights leading into the output layer of  neurons to 
modify its output in the correct direction (either in- 
crease or decrease its value) for the current pattern. The 
modifications of the weights connecting to units in 
previous layers are used as a signal indicating the 
degree of correctness of  the results in previous layers, 
and their input weights can also be adjusted. This 
propagates backwards until the weights from the input 
units are reached. With sufficiently small weight adjust- 
ments, this process approximates a true gradient de- 
scent on an error surface in the input pattern space. 

• Continue presenting input patterns until the whole 
training set has been processed. The presentation of the 
whole training set in this way is called a training epoch. 

• Test the network using the test set every 100 or so 
training epochs. The network weights are not adjusted 
during testing. 

• Repeat the cycle of training and testing until 
training should be stopped. The training of the network 
should be stopped when the error on the test set stops 
decreasing and begins to increase. At this point the 
error on the training set usually continues to decrease, 
however the increasing error on the test set indicates 
that the network is overfitting the training set. If the 
data are of known high quality, or the number of data 
points is low, more sophisticated methods can be used 
to determine the point at which to stop training [8]. 

• The network can now be used on new input data 
for which no desired output is available. An input 
pattern is formed as above, and presented to the net- 
work. The network output can then be interpreted as 

the answer with the level of significance estimated from 
the success on the test set when training was stopped. 

The back-propagation network has been used suc- 
cessfully in a number of  domains, ranging from image 
compression [9] to financial bond rating. 

The repeated presentation of all of  the input patterns 
in the training set with only small modifications of the 
weights allows the network to learn a generalization of 
the training set without being unduly influenced by 
particular input patterns which may be outliers. These 
neural networks are particularly resistant to noisy data, 
and continue to perform well in such situations. 

2.2. Neural networks versus statistical methods 

Statistical methods always require the assumption of 
some particular functional form for relating dependent 
variables to independent variables. When this func- 
tional form does not reflect the reality of the relation- 
ship between the variables, the statistical technique can 
only confirm this, but cannot predict the correct func- 
tional form. 

Feedforward neural networks provide a more gen- 
eral framework for determining relationships in the 
training data and do not require the specification of a 
particular functional form. The network forms internal 
representations which automatically learn an appropri- 
ate functional form at the same time as fitting the data 
to the functional form. 

A secondary disadvantage of the practical use of 
functional models is that they are not readily updated 
when new data become available. They may need to be 
rebuilt with the newer data from scratch. Again, this is 
less problematic with feedforward neural networks, as 
extra training cycles incorporating the new data can be 
used to modify the internal representations formed by 
the process of back-propagation training to include any 
changes. Thus the previously trained network can be 
trained further, without losing the functionality re- 
presented by the weights on the connections between 
neurons. 

2.3. Modeling of  microwave materials 

Input patterns are produced from the raw data 
which consist of  the signals measuring various prop- 
erties of the material, such as magnetization 4rcM, 
susceptibility Z, etc. 

An example of typical output features could be the 
values of  magnetic susceptibility versus temperature 
[10]. In our previous work [1] it was shown that sepa- 
rate single polynomial curves, of  degree between 6 and 
9, could be fitted to the data points. Polynomial curves 
of degree 7 were shown to be relatively good in all cases 
and were used in general to automate the process. 
These curves were also fitted piecewise to the data in 
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three sections - -  below the compensation temperature, 
in between the compensation and Curie temperatures, 
and above the Curie temperature. It was also indicated 
that for specific materials the polynomials of  degree 7 
did not provide the best fit. 

Using the feedforward neural network trained using 
the error back-propagat ion model, we believe that the 
process of  fitting these curves can be combined within a 
single neural network of appropriate  complexity. The 
neural network must be sufficiently complex to be able 

to simulate the fitting of  a polynomial of  up to degree 
9. In practice, it is known that for neural networks to 
learn quickly, excess functionality is initially required 
which may be removed later by the elimination of  
redundant neurons [1 1]. 

The raw data are used to produce training and test 
sets as described above. The network is then trained. 
The internal representation formed in the weight con- 
nections between neurons implicitly contains the curve 
fitted to the data points. For  visual display, this can be 
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extracted by running the trained neural network on all 
of the original data and plotting the results. For  the 
training and test data, clearly the results will be close 
to the expected (measured) values, however, the noise 
in individual measurements will have been filtered out. 
It is now also possible to input intermediate patterns 
and use the network to produce results for them, 
rather than interpolating between actual measurement 

points. 

3. Supplementary experimental results 

3. I. Measurements and computed results 

Following our earlier papers, we offer additional 
numerical evidence, further strengthening our thesis on 
the industrial feasibility of  CAD/CAM for microwave 
garnets. We first present two additional families of 
susceptibility versus temperature curves (Figs. 1 and 2). 
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Next we show a composite diagram (Fig. 3) of several 
saturation magnetization curves, all very clearly linear. 
We follow with three diagrams (Figs. 4-6)  showing the 
patterns of change of key temperature values. Two final 
diagrams (Figs. 7 and 8) show a novel verification of 
our CAD/CAM model [1,2]. 

3.2. Data analysis 

Figs. 1 and 2 present changes of magnetic suscepti- 
bility as a function of temperature. Both diagrams show 
several superimposed curves; in each we keep the con- 
tents of yttrium and gadolinium constant (x = 0.2 and 
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0.4, respectively), while varying the contents of iron and 
aluminum (from y = 0.08 to 0.20 in Fig. 1, and from 
y = 0.02 to 0.08 in Fig. 2). 

Fig. 3 presents several examples of linearly decreas- 
ing saturation magnetization with increasing Gd and A1 
contents. Fig. 4 gives two examples of the linearity of 
the compensation temperatures, while Fig. 5 demon- 
strates that the Curie temperature remams constant 
with changes of Gd content, but decreases linearly 

when A1 content is increased. The most significant for 
engineering applications are the linear patterns shown 
in Fig. 6. The location of the middle temperature of 
the stability zone can determine the actual industrial 
usefulness. 

The last two diagrams (Figs. 7 and 8) offer new 
examples of the correctness of the linear interpolation 
and the resulting CAD approach to designing new 
compounds for their susceptibility properties. 
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